無限次元対称性を用いた自己組織化臨界現象の研究
【研究分野】素粒子・原子核・宇宙線・宇宙物理
【研究キーワード】
自己組織化 / 臨界現象 / 相転移 / 場の理論 / 代数操作 / 相関関数 / 開放系 / 可積分構造
【研究成果の概要】
自己組織化臨界現象(self-organized criticality)は近年になって注目を集めつつある分野であり、「臨界点は不安定」という従来の統計物理の常識を覆す著しい性質を備えている。本研究は、従来の計算機シミュレーションに基づく現象論的理解に代わって、可解格子模型等で開発された台数的手法を「自己組織化臨界現象」に応用することを目的とし、具体的にはasymmetric exclusion modelという多数の粒子が一次元のchain(格子点)の上を、互いに排他的に、一方向に向かって動くstochasticな系を調べた。
場の理論では、時間と空間を対等に扱うのが自然である。このモデルでも、本来の空間一次元、時間なしの系であるところを空間0次元、時間1次元の量子力学系として考察すればよいのではないかと考えた。そこで粒子がいる状態への射影子Fと、いない状態への射影子Eとを用意し、FE=F+Eという非自明な代数関係を置くことによって、定常状態でのあらゆる相関関数は、代数的操作で厳密に求められることが分かった。さらに、入口・出口での境界条件(粒子流速度)のわずかな変化が、中心付近の粒子のdensityやcurrentなどの変化を引き起こすこと、すなわち相転移の現象が確かに見られることがわかった。
現在、affine型の量子群の構造が、自己組織化の研究でも有効でないかと研究を進めている。例えば、XXZモデルの反強磁性相では、規約表現空間と物理的な状態空間の対応を通じて、一般の相関関係が計算できる。系のパラメータqを複素数に取ることは、表現論的には何の問題もないが、Hamiltonianがエルミートでない「開放系」に対応し、このような系でもある種の可積分構造があることを示唆しており、今後も研究を進めてゆきたい。
【研究代表者】
【研究種目】奨励研究(A)
【研究期間】1994
【配分額】800千円 (直接経費: 800千円)