エージェントの自律的組織化学習アルゴリズムとシステム効率化の実現
【研究キーワード】
マルチエージェントシステム / 協調構造 / 深層強化学習 / 組織化 / 分散人工知能 / 組織行動 / 社会学習 / 機械学習 / マルチエージェントプランニング
【研究成果の概要】
一昨年度に課題とした複数の異なる能力を持つエージェントが、順番に個別の作業を進めるタイプのタスクにおいて、自分自身が担当すべき個別作業の学習と、その前後で作業するエージェントとの協調・調整行動の発現を、より複雑で多くのエージェントが必要なタスクでも実現する手法を提案した。しかし、同時に順列的作業では時間差があり、エージェント毎の学習の進行の差が障壁となり、より柔軟な自律学習手法が必要であることも判明した。第2に、協調行動を学習したエージェントが観測可能範囲の着目している対象を明示すること、また周辺にいる協調している・協調していないエージェントへの着目度の変化などを解明する仕組みを提案した。初期実験では、組織あるいはグループを組むべき相手に応じて着目度が変わることが得られたが、より複雑な環境構造や組織構造、エージェントの処理速度に差があるときなどの確認が必要である。また、データに含まれる雑音の影響を無視できないことも判明し、その改善にも取り組み、初期的な結果を得ている。
他方、学習機能には頼らずに、堅実なアルゴリズムによるエージェント(自走ロボットを想定)の移動アルゴリズムを考案した。これは、(1) 目的地が集中するなどの場合、既存のアルゴリズムでは対応できなかったが、目的地の近くで待機し、そのあとに順に目的地に進むという効率的行動を実現したこと、(2) エージェントの作業時間に差や揺らぎがあるときに柔軟に対応し行動を変える手法を提案・評価した。前者は、当該分野でトップ会議であるAAMASに、後者は応用に関する重要会議であるCompsacにそれぞれ採択されている。また国内でも関連論文が情報処理学会の研究会で最優秀論文書と優秀論文賞を受賞している。
【研究代表者】
【研究種目】基盤研究(B)
【研究期間】2020-04-01 - 2024-03-31
【配分額】17,160千円 (直接経費: 13,200千円、間接経費: 3,960千円)