セミパラメトリック手法に対する高次漸近理論
【研究分野】統計科学
【研究キーワード】
時系列解析 / セミパラメトリック手法 / 漸近理論 / 高次漸近理論 / 推定論 / 検定論 / シュミレーション / スペクトル解析 / スペクトル定度関数 / 大偏差原理 / ノンパラメトリック / 判別解析 / 最尤推定量 / ダービン ワトソン統計量
【研究成果の概要】
多次元非正規定常過程のスペクトル密度行列の汎関数に基づいて種々の重要な時系列指標のセミパラメトリックな推定、検定等の漸近理論を構築した。この場合、汎関数に現れるスペクトル密度行列を推定するときは、ノンパラメトリックなスペクトル推定量を用いた。この基礎理論に基づいて、経済指標のセミパラメトリック推定、検定、をおこなった。また時系列の判別分析において、セミパラメトリックな判別統計量を提案し、漸近的性質をしらべた。従来のカルバック、レイブラーの情報量に基づく判別統計量との比較も行った。また提案された判別統計量は、地震波の判別に応用された。即ち、通常の地震波と鉱山の爆発による地震波の判別に、応用され、判別結果が大変良好であることが判明した。また高次の漸近論では一般的な検定統計量のクラスを定義し、これにたいして、高次の検出力を一般的な形で評価した。以上は定常時系列に関する議論であるが、局所定常時系列にたいして漸近理論の基礎を構築し、これに基づいて、時系列の定常性の検定の基礎的議論をおこなった。その他、長期記憶課程を撹乱項にもつ時系列回帰モデルに対する局所漸近正規性の証明もおこなった。
【研究代表者】